永續能源跨域應用人才培育計畫

中央大學聯-中壢高商

高三多元選修:『風力發電』子教案 - 葉片設計與儲能

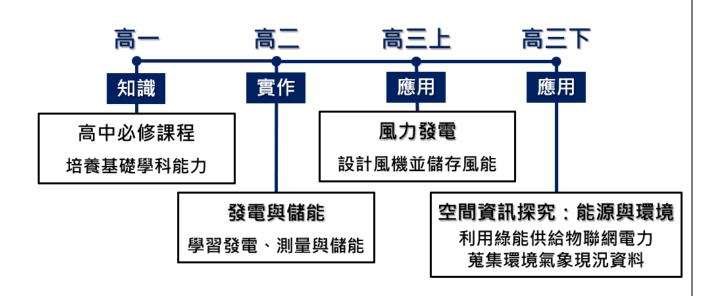
(一)教學內容

教學對象	高三多元選修學生	教學時數	9 週共 18 節	
教學設備	教師電腦、投影機、學生電腦、小組白板、風力發電材料包、多功能電度表、Micro接頭、喬式整流器、飛機木片、AB膠、LED燈、剪刀。			
課程	第一單元課程教師講授和介紹風力機的基本原理‧剖析風力機的優缺點‧讓學生討論和探究。透過案例研究和現實應用‧瞭解風力發電在現代社會中的發展‧隨後引導學生分組對風力發電進行分析以及分享。接著第二單元課程會實際操作與組裝手持風力發電機‧加深學生對風力發電裝置以及其應用之理解與想法。第三單元課程開始時‧教師會教授微電網與儲能技術相關知識‧並讓同學分組討論‧最後教師會請同學開發自己設計能儲能的風力發電機‧並將電能儲存在充電電池上。課程評量以學生之學習歷程記錄本內容和學生實際作品為依據‧這些製作後的模組紀錄‧可以作為總結性評量。			
學習目標	以作為總結性評量。 一、認知目標: 1.了解關於風能知識。 2.了解風機發電的原理。 3.了解葉片製作的原理。 4.了解微電網的定義、發展背景和應用場景。 5.了解儲能技術:電池儲能、超級電容器、儲氫等。 6 認識小組專題協作之過程。 二、情意目標 1.了解風力發電機在生活中的應用,並願意主動思考生活中使用的各種可能性。 2.了解各種能源都有其優點和缺點,我們需要在能源使用上達到平衡,儘可能地減少能源消耗,提高能源利用效率,同時大力發展可再生能源和節能技術,以實現能源的可持續利用和綠色發展。 三、技能目標 1.能夠完成風力發電機葉片的設計與製作。			

本門課為多元微課程,學生之先備知識與經驗較為不一,因此課程開始前,會先針對以下面向進學習前調查,以進行課程內容調整。

先備 知識

- 1.學生多具有版電路製作之經驗。
- 2.學生了解電流、電壓、電阻之概念,並了解電池串聯與並聯的差異。
- 3. 學生了解高中物理內容相對運動的概念。
- 4.學生了解高中物理內容功能定理的概念。


	學習主題		能源意識、能源概念、能源使用、行動參與	
能源教	所融入之	能源意識	能 U1 養成正確的能源價值觀。 能 U2 了解提高能源使用效率的重要性。 能 U4 了解各種能量的存 在方式與相互間之轉換。	
育議題		能源概念	能 U3 了解效率化使用能 源的意義。 能 U4 了解各種能量的存在方式與相互間之轉換。	
融入	實質內涵	能源使用	能 U5 認識我國與國際間 能源管理及永續發展的情形。	
		行動參與	能 U8 運用知識·蒐集資料·並發揮創意·動手製作節能相 關之實物作品。	
	學習表現	po-Vc-1	能從日常經驗、科技運用、社會中的科學相關議題、學習活動、 自然環境、書刊及網路媒體中,汲取資訊並進行有計畫、有條理 的多方觀察,進而能察覺問題。	
		an-Vc-3	體認科學能幫助人類創造更好的生活條件,但並不能解決人類 社會所有的問題,科技發展有時也會引起環境或倫理道德的議 題。	
與課		學習表現 ' <u>'</u> ———	pe-Va-2	能正確安全操作適合學習階段的物品、器材儀器、科技設備及資源。能進行精確、高效率之的質性觀察或數值量測,視需要能 運用科技儀器輔助記錄。
程綱要的			pc-Vc-1	能理解同學的探究過程和結果(或經簡化過的科學報告),提出 合理而且較完整的疑問或意見。並能對整個探究過程:包括,觀 察定題、推理實作、數據信效度、資源運用、活動安全、探究結 果等,進行評核、形成評價並提出合理的改善方案。
對		運 t-IV-3	能設計資訊作品以解決生活問題。	
應		設 c-V-2	能運用科技知能及創新思考以設計並實際製作科技產品。	
		設 c-V-3	能具備溝通協調、組 織工作團隊的能力。	
		ENa-Vc-2	節用資源與合理開發·可以降低人類對地球環境的影響·以利永 續發展。	
	學習內容	CNc-Vc-1	新興能源與替代能源在臺灣的發展現況。	
	学笛内谷	PEb-Va-3	質點在同一直線上運動·其相對速度為質點速度之差。	
		PBa-Va-1	功能定理。	
		PBa-Va-2	功等於力和位移的向量內積,功率為功的時間變化率。	

PNc-Vc-4	雖然能量守恆·但能量一旦發生形式上的轉換·通常其作功效能 會降低。
PMc-Vc-3	科學的態度與方法。
PKc-Va-5	電路中電流帶有能量。
PKc-Va-6	電路有串聯、並聯及迴路等形式,電路中的能量及電量必須守恆。
PMc-Vc-2	電在生活中的應用
生 A-V-1	機構與結構的設計與應用。
生 A-V-2	機電整合與控制的設計與應用。
生 P-V-1	工程設計與實作。

(二)課程設計架構圖

圖一、中壢高商高二、高三多元選修 - 整體課程架構。

發展素養/專題導向永續能源教學模組

圖一、風力發雷學習流程。

高三多元選修:『風力發電』子教案-葉片設計與儲能

核心問題

如何有效率的儲存風能

核心素養

U-A2 具備系統思考、分析與探索的素養,深化後設思考,並積極面對挑戰以解決人生的各種問題。 U-B2 具備適當運用科技、資訊與媒體之素養,進行各類媒體議讀與批判,並能反思科技、資訊與媒體倫理的議題。

課程 模組單元

風力機原理與應用探討 -

手持風力發電機製作

設計儲能風力發電機

學生 最終產出

- 1. 能源議題探討分享報告。
- 2.手持風力發電機製作成品。
- 3. 儲能風力發電機製作成品。

(三)教學活動步驟

單元一:風力機原理與應用探討			
活動簡述	講授和介紹風力機的基本原理,剖析風力機的優缺點,讓學生討論和探究。透過案例研究和現實應用,瞭解風力發電在現代社會中的發展,隨後引導學生分組對風力發電進行分析以及分享。	授課節數 (時間)	4
學習表現	po-Vc-1 能從日常經驗、科技運用、社會中的科學相關議題、學習活動、自然環境、書刊及網路,體中,汲取資訊並進行有計畫、有條理的多方觀察,進而能察覺問題。 an-Vc-3 體認科學能幫助人類創造更好的生活條件,但過過一個人類社會所有的問題,一個人類的議題。 ENa-Vc-2 節用資源與合理開發,可以降低人類類對地球環境的影響,以利永續發展。 CNc-Vc-1 新興能源與替代能源在臺灣的發展現況。 PEb-Va-3 二質點在同一直線上運動,其相對速度為二質點速度之差。 PBa-Va-1 功能定理。 PBa-Va-1 功能定理。 PBa-Va-2 功等於力和位移的向量內積,功率為功的時間變化率。 PNc-Vc-4雖然能量守恆,但能量一旦發生形式上的轉換,通常其作功效能會降低。 PMc-Vc-3 科學的態度與方法。	學習目標	1.介紹各種風力機・並瞭解風力機的優點和缺點。 2.探討各種能源在現代社會中的應用和發展。 3.了解風力機的原理和技術。
教學活動	活動內容		備註
各種能源 的分組討 論	先介紹各種發電的類型·接著分組討論·係和能力去選定1到3種發電類型·然後搜集 目作出探索和討論·教師可以在旁協助討論 組上台分享。	非資料・對題	60min

前測	先做前測了解同學的先備知識。	10min
風力發電發展	由風力發電的發展歷史出發,介紹各種風力機的種類,並瞭解風力機的優點與缺點,接著撥放影片『台灣美麗的風力發電!-風車【超異想進化論】』介紹影片,簡單了解風力機的發展與原理。	30min
理論介紹	教師由網路賣場對於風力機過於誇示的不合理廣告,引起同學興趣,並帶領同學學習有關水平軸升力風機相關的知識: ①思考風力機葉片大小、風速與風能的關係,引導同學推導出功率公式。 ②介紹貝茲定理,說明風力機將風能轉成電能有一定的極限。 ③學習升力現象,知道升力與攻角的定義,進而了解風車葉片為什麼會轉。 ④學習設計現代風機的幾個要點,瞭解葉片數量、周速比與安裝角的關係。	80min
後測	進行測驗,並了解同學的學習狀況。	20min

單元二:手持風力發電機製作			
活動簡述	發下手持風力發電的材料,並以實際操作 與組裝,加深學生對風力發電裝置以及其 應用之理解與想法。	授課節數 (時間)	4
學習表現學習內容	pe-Va-2 能正確安全操作適合學習階段的物品、器材儀器、科技設備及資源。能進行精確、高效率之的質性觀察或數值量測,視需要能運用科技儀器輔助記錄。 PKc-Va-12 發電機與變壓器的原理皆為電磁感應。 PKc-Va-5 電路中電流帶有能量。 PKc-Va-6 電路有串聯、並聯及迴路等形式,電路中的能量及電量必須守恆。	學習目標	1.藉由製作 PVC 葉片·更深 入理解葉片的翼型各區 段不同攻角的設計。 2.了解 LED 燈的工作原理。 3.學習焊接電路。
教學活動	活動內容	備註	
理論探討	①LED燈的正負極判斷與認識切入電壓,並 參雜不同元素會發出不同顏色及不同切 體簡介。	50min	

	②發電機的原理。	
焊接實作	讓學生找出LED燈接腳如何與發電機連接才會發光,再 焊接LED燈至發電機	50min
手持風力 發電機實 作	發下材料包(依照學生狀況可以自行雷切或設計),利用熱烘槍將0.5mm厚度的PVC在木模具上塑形,製作兩葉片的微型手持風力發電。	80min
回饋反思	完成課程學習單的撰寫,分享自己的作品。	20min

單元三:設計儲能風力發電機				
活動簡述	經由之前風力機的知識,加上微電網與儲 能技術知識,分組進行討論設計風力機, 並將電能儲存在充電電池上。	授課節數 (時間)	10	
學習表現學習內容	pc-Vc-1 能理解同學的探究過程和結果 (或經簡化過的科學報告),提 出合理而且較完整的疑問或意 見。並能對整個探究過程:包 括,觀察定題、推理實作、數據 信效度、資源運用、活動安全、 探究結果等,進行評核、形成評 價並提出合理的改善方案。 運 t-IV-3 能設計資訊作品以解決生活問 題。 設 c-V-2 能運用科技知能及創新思考以 設計並實際製作科技產品。 設 c-V-3 能具備溝通協調、組 織工作團 隊的能力。 PMc-Vc-2 電在生活中的應用 生 A-V-1 機構與結構的設計與應用。 生 A-V-2 機電整合與控制的設計與應 用。 生 P-V-1 工程設計與實作。 生 P-V-3 進階機電整合設計與實作(感 測電路及程式控制)。	學習目標	1.微電網與儲能技術知識。 2.了解葉片數量與安裝角的 關係 3.利用飛機木製作葉片 4.學習焊接並組裝儲能電路。	
教學活動	活動內容		備註	
微電網與 儲能技術 介紹	①微電網基礎介紹:什麼是微電網、微電網部分、微電網的優點和挑戰。 ②儲能技術介紹:儲能技術的特點和應用場 能技術與其他儲能技術的介紹。	40min		
微電網與 儲能分組 討論	①要求學生討論一個實際應用場景,並分析 微電網和儲能技術應該如何整合,討論具 案、架構設計和操作控制等方面。 ②報告和展示:每組選擇一個代表,向全班 結果和技術方案,並回答其他組的提問。	60min		
設計儲能 風力發電	①學生分組設計儲能風力發電機,包含葉片量、支架設計,教師可以到各組參與討論 ②協助學生計算各組設計葉片的理想安裝角	50min		

機的分組	③各組報告分享自己的設計。	
討論		
	①教師介紹複合材料。	
葉片實作	②利用雷切機製作塑形的木模具。	150min
	③利用膠(白膠或 AB 膠)使飛機木塑形來製作葉片。	
日七八百	①製作風力機的支架。	
風力發電機和裝	②完成儲能電路的製作。	150min
機組裝	③完成小組風機並利用風機儲能。	
小組報告	各組分享自己的作品。	50min

(四)教學回饋與參考資料

教學成果與回饋

- 一、形成性評量
- 1. 風力發電製作成品成果。
- 2. 學習歷程記錄本:活動一小組上台分享報告、活動二課程學習單與作品。
- 3. 教師課堂質性評量: 教師於活動三對學生小組合作狀況進行評量。
- 二、總結性評量:

活動三學生完成設計儲能風力發電機,須完成學習歷程記錄本中反思。

反思內容包含

- 1. 在一連串的課程之後,重新打開你第一節課時做的分組,請問你是否有任何想法上的改變?
- 2. 在設計儲能風力發電機的過程中,你遇到了那些硬體上的困難與問題?你又是如何解決的呢?如果可以重來,你會怎麼避免同樣的問題發生呢?
- 3. 請你簡單敘述貴小組的分工模式,並在表中為自己與組員分別打上「貢獻分數」、「參與程度分數」以及「合作愉快指數」。
- ●學生回饋收集方法:學期課程結束後,會讓學生填寫學期課程回饋Google表單,請學生分享對課程活動設計的想法與回饋。

參考資料

- 一、周鑑恆(2021):風力發電 20 問。出版社:海峽前鋒文化
- 二、周鑑恆(2020):風車的原理設計與自製。出版社:海峽前鋒文化
- 三、周鑑恆(2018):以 PVC 製作專業風車的實作探究與科普活動。

《物理教育學刊》,2018,19(1),43-58。

四、吳明德(2012):風力渦輪機葉片原理與實作。

《物理教育學刊》 · 2012,13(1),51-58。